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Abstract. The magnetic monopole condensate is calculated in the dual Monopole Nambu–Jona–Lasinio
model with dual Dirac strings suggested in [1,2] as a functional of the dual Dirac string shape. The calcu-
lation is carried out in the tree approximation in the scalar monopole–antimonopole collective excitation
field. The integration over quantum fluctuations of the dual–vector monopole–antimonopole collective ex-
citation field around the Abrikosov flux line and string shape fluctuations are performed explicitly. We
claim that there are important contributions of quantum and string shape fluctuations to the magnetic
monopole condensate.

1 Introduction

In [1,2] there has been suggested the dual Monopole Na-
mbu–Jona–Lasinio (MNJL) model with dual Dirac strings
as a continuum analogy of Compact Quantum Electrody-
namics (CQED) which is defined for lattices as nonlinear
U (1) gauge theory. It has a confining phase like QCD
[3] and realizes confinement of “color” electric charges.
Thereby, the investigation of CQED should help us to un-
derstand quark confinement. As has been shown in [4] the
non-perturbative vacuum of CQED behaves like an effec-
tive dual superconductor with magnetic monopoles. Due
to magnetic monopoles the electric flux between quarks re-
arranges and looks like the field produced by a dual Dirac
string. As a result quarks interact via a linearly rising
potential [5,6] that realizes quark confinement [7,8] and
spontaneous breaking of chiral symmetry (SBχS) [8].

The NJL model [9] can be regarded as some kind of rel-
ativistic extension of the BCS (Bardeen–Cooper–Schrief-
fer) theory of superconductivity [10]. It also possesses a
non-perturbative vacuum with a ground state of the same
kind as in a superconductor in the superconducting phase.
The latter has been the promoting idea of [1,2] to put the
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NJL–model to the foundation of a continuum space–time
model realizing non–perturbative phenomena of CQED.

The MNJL–model is based on the Lagrangian, invari-
ant under “color” magnetic U(1) symmetry, of massless
magnetic monopoles, self–coupled through local four–mo-
nopole interaction [1,2]:

L(x) = χ̄(x)iγµ∂µχ(x) + G[χ̄(x)χ(x)]2

−G1[χ̄(x)γµχ(x)][χ̄(x)γµχ(x)], (1.1)

where χ(x) is a massless magnetic ”color” monopole field,
G and G1 are positive phenomenological constants respon-
sible for the magnetic monopole condensation and the
dual–”color” vector field mass, respectively.

The magnetic monopole condensation accompanies the
creation of massive magnetic monopoles χM (x) with mass
M , χ̄χ–collective excitations with quantum numbers of
scalar Higgs meson field σ with mass Mσ = 2 M and a
massive dual–vector field Cµ with mass MC defined as
[1,2]:

M2
C =

g2

2G1
− g2

8π2 [J1(M) + M2J2(M)], (1.2)

where J1(M) and J2(M) are quadratically and logarith-
mically divergent integrals [1,2]

J1(M) =
∫

d4k

π2i

1
M2 − k2 = Λ2 −M2`n

(
1 +

Λ2

M2

)
,

J2(M) =
∫

d4k

π2i

1
(M2 − k2)2

= `n

(
1 +

Λ2

M2

)
− Λ2

M2 + Λ2 . (1.3)
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Here Λ is the ultra–violet cut–off. The mass of the
magnetic monopole field χM (x) obeys the gap–equation
[1,2]:

M = −2G < χ̄(0)χ(0) >=
GM

2π2 J1(M). (1.4)

After the integration over magnetic monopole degrees of
freedom the effective Lagrangian containing quarks, an-
tiquarks and the fields of scalar σ and dual–vector Cµ

collective excitations reads

Leff(x) =
1
4
Fµν(x)Fµν(x) +

1
2
M2

CCµ(x)Cµ(x)

+
1
2
∂µσ(x)∂µσ(x)− 1

2
M2

σσ2(x)

[
1 + κ

σ(x)
Mσ

]2

+Lfree quark(x). (1.5)

The gap–equation (1.4) has been derived from the effective
Lagrangian (1.5) by virtue of the suppression of the direct
transitions σ ←→ vacuum [1,2]. When matching the gap–
equation Mχ = −2G < χ̄χ > with that Mχ = −2(G1 +
3G/4) < χ̄χ > derived as one–loop corrections to the mass
of the monopole field by using the Lagrangian (1.1) we fix
G1 in terms of G: G1 = G/4.

The coupling constants g and κ are related by the con-
straint

g2

12π2 J2(M) =
κ2

8π2 J2(M) = 1 (1.6)

or κ2 = 2g2/3 [1,2]. Lfree quark(x) is the kinetic term for
the quark and antiquark,

Lfree quark(x) =

−
∑

i=q,q̄

mi

∫
dτ

(
dXµ

i (τ)
dτ

dXν
i (τ)
dτ

gµν

)1/2

δ(4)(x−Xi(τ)) (1.7)

We consider quark and antiquark as classical point–like
particles with masses mq = mq̄ = m, electric charges Qq =
−Qq̄ = Q, and trajectories Xν

q (τ) and Xν
q̄ (τ), respectively.

The field strength Fµν(x) is defined [1,2] as Fµν(x) =
Eµν(x)−∗dCµν(x), where dCµν(x) = ∂µCν(x)−∂νCµ(x),
and ∗dCµν(x) is the dual version, i.e., ∗dCµν(x) = 1

2εµναβ

dCαβ(x)(ε0123 = 1).
The ”color” electric field strength Eµν(x), induced by

a dual Dirac string, is defined following [1,2] as

Eµν(x) = Q

∫∫
dτdσ

(
∂Xµ

∂τ

∂Xν

∂σ
− ∂Xν

∂τ

∂Xµ

∂σ

)

δ(4)(x−X), (1.8)

where Xµ = Xµ(τ, σ) represents the position of a point on
the world sheet swept by the string. The sheet is parame-
terized by the internal coordinates −∞ < τ <∞ and 0 ≤
σ ≤ π, so that Xµ(τ, 0) = Xµ

−Q(τ) and Xµ(τ, π) = Xµ
Q(τ)

represent the world lines of an antiquark and a quark
[1,2,5]. Within the definition (1.8) the tensor field Eµν(x)
satisfies identically the equation of motion, ∂µFµν(x) =
Jν(x). The electric quark current Jν(x) is defined as

Jν(x) =
∑

i=q,q̄

Qi

∫
dτ

dXν
i (τ)
dτ

δ(4)(x−Xi(τ)). (1.9)

Hence, the inclusion of a dual Dirac string in terms of
Eµν(x) defined by (1.8) satisfies completely the electric
Gauss law of Dirac′s extension of Maxwell′ s electrody-
namics.

As has been shown in [1,2] the vacuum expectation
values of time–ordered products of densities expressed in
terms of the massless–monopole field, i.e., the magnetic
monopole Green function

G (x1, . . . , xn) = < 0|T(χ̄(x1)Γ1χ(x1) (1.10)
. . . χ̄(xn) Γnχ (xn))|0 >conn.

where Γi(i = 1, . . . , n) are the Dirac matrices, are given
by [1,2]

G(x1, . . . , xn) = < 0|T(χ̄(x1)Γ1χ(x1)
. . . χ̄(xn)Γnχ(xn))|0 >conn.

= (M) < 0|T
(
χ̄M (x1)Γ1χM (x1)

. . . χ̄M (xn)ΓnχM (xn)× exp i

∫
d4x

−gχ̄M (x)γνχM (x)Cν(x)
−κχ̄M (x)χM (x)σ(x)

+Lint[σ(x)]}
)
|0 >(M)

conn. . (1.11)

Here |0>(M) is the wave-function of the non-perturbative
vacuum of the MNJL–model in the condensed phase and
|0> the wave-function of the non-condensed perturbative
vacuum. Lint[σ(x)] describes self–interactions of the σ–
field:

Lint[σ(x)] = −κ Mσ σ3(x)− 1
2

σ4(x). (1.12)

The self–interactions Lint[σ(x)] provide σ–field loop con-
tributions and can be dropped out in the tree σ–field ap-
proximation accepted in [1,2]. In the tree σ–field approx-
imation the r.h.s. of (1.11) acquires the form

G(x1, . . . , xn) = < 0|T(χ̄(x1)Γ1χ(x1) (1.13)
. . . χ̄(xn)Γnχ(xn))|0 >conn.

= (M) < 0|T
(
χ̄M (x1)Γ1χM (x1)

. . . χ̄M (xn)ΓnχM (xn)

× exp i

∫
d4x
{
− gχ̄M (x)γνχM (x)Cν(x)

−κχ̄M (x)χM (x)σ(x)}
)
|0 >(M)

conn. .

The tree σ–field approximation can be justified keeping
massive magnetic monopoles very heavy, i.e. M � MC .
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This corresponds to the London limit Mσ = 2 M � MC

in the dual Higgs model with dual Dirac strings [11]. The
inequality Mσ �MC means also that in the MNJL model
we deal with Dual Superconductivity of type II [12].

In [2] (1.13) has been applied to the computation of the
magnetic monopole condensate <χ̄(x)χ(x); E> in depen-
dence of the dual Dirac string shape represented by the
electric string tensor Eµν(x) (1.8). The magnetic monopole
condensate <χ̄(x)χ(x); E> has been calculated in the tree
σ–field approximation neglecting the fluctuations of the
dual–vector field Cµ around the Abrikosov flux line which
satisfies the equation

(2 + M2
C)Cν [E(x)] = −∂µ

∗Eµν(x), (1.14)

and takes the form

Cν [E(x)] = −
∫

d4x′∆(x− x′, MC)

×∂′
µ

∗Eµν(x′), (1.15)

where ∆(x− x′, MC) is the Green function

∆(x− x′, MC) =
∫

d4k

(2π)4
e−ik · (x− x′ )

M2
C − k2 − i0

. (1.16)

In this paper we calculate the magnetic monopole con-
densate <χ̄(x)χ(x); E> in the tree σ–field approximation
but taking into account quantum fluctuations of the dual–
vector field Cµ around the Abrikosov flux line Cν [E(x)].
An important role of such fluctuations for the formation
of the interquark potential has been pointed out in [13]
within a dual Higgs model with dual Dirac strings.

This paper is organized as follows: In Sect. 2 we calcu-
late the magnetic monopole condensate in the tree σ–field
approximation and explicitly integrate out quantum fluc-
tuations of the dual–vector field Cµ around the Abrikosov
flux line. In Sect. 3 we calculate the contribution of the
string shape fluctuations to the magnetic monopole con-
densate. In the Conclusion we discuss the obtained results.

2 Quantum dual–vector field fluctuations

In the tree σ–field approximation we determine the mag-
netic monopole condensate < χ̄(x)χ(x); E > following [1]
as

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=(M)< 0|T
(
χ̄M (x)χM (x)

× exp i

∫
d4z
{
− gχ̄M (z)γνχM (z)Cν(z)

−κχ̄M (z)χM (z)σ(z)}
)
|0 >(M)

conn., (2.1)

where the r.h.s. of (2.1) should vanish at Cµ = σ = 0.
The time ordering operator and vacuum wave–function

act on the massive magnetic monopole fields χM and the
fields of collective excitations σ and Cµ.

The calculation of vacuum expectation values of time–
ordered products of the dual–vector fields is convenient to
perform by means of the path integral method

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=
1
Z

∫
DCµe

i

∫
d4z Leff [Cµ(z)]

(M) < 0|T
(
χ̄M (x)χM (x)

× exp i

∫
d4z
{
− gχ̄M (z)γνχM (z)Cν(z)

−κχ̄M (z)χM (z)σ(z)}
)
|0 >(M)

conn., (2.2)

where Z is a normalization factor determined as

Z =
∫
DCµe

i

∫
d4z Leff [Cµ(z)]

. (2.3)

The effective Lagrangian Leff [Cµ(z)] is defined by the part
of the effective Lagrangian equation (1.5) related to the
Cµ–field:

Leff [Cµ(z)] =
1
4
Fµν(z)Fµν(z)

+
1
2
M2

CCµ(z)Cµ(z). (2.4)

In order to integrate out quantum fluctuations of the dual–
vector field Cµ around the shape of the Abrikosov flux
line we split the Cµ–field into a classical field Cµ[E(z)] in-
duced by the Dirac string and quantum fluctuations cµ(z)
around that classical background. [13]:

Cµ(z) = Cµ[E(z)] + cµ(z), (2.5)

where Cµ[E(z)] satisfies (1.14), and cµ(z) are the fluctua-
tions of the dual–vector field having a vanishing vacuum
expectation value < cµ(z) >= 0. Substituting the decom-
position equation (2.5) in the Lagrangian equation (2.4)
we arrive at the Lagrangian of the quantum fields cµ(x)
fluctuating around the Abrikosov flux line.

Leff [Cµ(z)] = Lstring(z) +
1
2

cµ(z)

×
[
(2 + M2

C) gµν − ∂µ∂ν
]
cν(z), (2.6)

where we have used (1.14). The Lagrangian of the dual
Dirac string Lstring(z) is defined [5,11,13,14]

∫
d4zLstring(z) =

1
4
M2

C

∫ ∫
d4zd4yEµα(z)

×∆α
ν (z − y, MC)Eµν(y), (2.7)

where ∆α
ν (z − y, MC) = (gα

ν + 2∂α∂ν/M2
C)∆(z − y;MC).

Since the Lagrangian (2.5) is Gaussian with respect
to the cµ–field, we are able to integrate out the cµ–field
exactly.
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Fig. 1. Magnetic monopole diagrams describ-
ing the magnetic monopole condensate around
the dual Dirac string without fluctuations of
the dual–vector field

Integrating over the cµ–field we reduce < χ̄(x)χ(x);
E > to the form:

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >=(M)< 0|T
×
(
χ̄M (x)χM (x) exp−i

1
2

g2
∫∫

d4zd4y [χ̄M (z)γµχM (z)]

×Dµν(z − z′, MC) [χ̄M (z′ )γνχM (z′ )]

× e
i

∫
d4z{−gχ̄M (z)γνχM (z)Cν [E(z)]

−κχ̄M (z)χM (z)σ(z)}
)
|0 >(M)

conn., (2.8)

where Dµν(z−z′, MC) is the Green function of the free cµ–
field: Dµν(z− z′, MC) = (gµν + ∂µ∂ν/M2

C) ∆(z− z′, MC).
Since herein we consider dual Dirac strings as classical ob-
jects the contribution of the Lagrangian of the dual Dirac
strings Lstring(z) cancels out.

The integration over σ–field degrees of freedom in the
tree approximation we perform following [2]. This yields

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

= − κ2

4M3 < χ̄(0)χ(0) > (M) < 0|T
(
χ̄M (x)χM (x)

× exp−i
1
2
g2
∫∫

d4zd4z′[χ̄M (z)γµχM (z)]

Dµν(z − z′;MC) [χ̄M (z′ )γνχM (z′ )] (2.9)

× exp−i g

∫
d4z [χ̄M (z)γνχM (z)]Cν [E(z)]

)
|0 >(M)

conn.,

For the calculation of the vacuum expectation value in
the r.h.s of (2.9) we assume that the massive magnetic
monopole fields χM (x) are almost on–mass shell. It is valid
due to a very large mass of the monopole fields. In this case
the transfer momenta are small compared with the mass
of the dual–vector field MC . By virtue these assumptions
we can reduce the four–monopole interaction in (2.9) to a
point–like interaction.

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

= − κ2

4M3 < χ̄(0)χ(0) > (M) < 0|T
(
χ̄M (x)χM (x)

× exp−i

∫
d4z

{
g2

2M2
C

[χ̄M (z)γµχM (z)]2

+g [χ̄M (z)γνχM (z)]Cν [E(z)]

})
|0 >(M)

conn. . (2.10)

Thus, since M �MC the vacuum averaging over the mas-
sive magnetic monopole fields can be represented by the

momentum integrals [2] related to the magnetic monopole
diagrams depicted in Fig. 1 and Fig. 2:

(M) < 0|T
(
χ̄M (x)χM (x)× exp−i

∫
d4z

{
g2

2M2
C

[χ̄M (z)γµ

×χM (z)]2 + g [χ̄M (z)γνχM (z)]Cν [E(z)]

})
|0 >(M)

conn.

= − 1
16π2

∫
d4k

π2i
tr

{
1

M − k̂ + gĈ[E(x)]
− 1

M − k̂

}

− 1
16π2

∫
d4k

π2i
tr

{
1

M − k̂ + gĈ[E(x)]

× 1

M − k̂ + gĈ[E(x)]
γµ1

}

×
∞∑

n=1

(
g2

2M2
C

)n(
1

16π2

)(n−1) ∫
d4k1

π2i
tr

×
{

1

M − k̂1 + gĈ[E(x)]
γµ1

1

M − k̂1 + gĈ[E(x)]
γµ2

}

. . .

∫
d4kn−1

π2i
tr

{
1

M − k̂n−1 + gĈ[E(x)]
γµn−1

× 1

M − k̂n−1 + gĈ[E(x)]
γµn

}
1

16π2

∫
d4kn

π2i
tr

×
{

γµn

1

M − k̂n + gĈ[E(x)]

}
+ . . . . (2.11)

The first term in the r.h.s. of (2.11) has been calculated
in [2] at the neglect of quantum fluctuations of the dual–
vector field Cµ, whereas the second term is fully due to
these fluctuations. We calculate the second term keeping
leading divergent contributions as it is accepted in the
MNJL–model [1,2]. The ellipses denote the contribution
of the diagrams depicted in Fig. 2b. This is a constant of
order of O(1/M) which can be removed by a slight redef-
inition of the cut–off and the magnetic monopole mass in
order to retain the gap–equation (1.4) in the same form.

The vacuum expectation value (2.11) amounts to

(M) < 0|T
(
χ̄M (x)χM (x)

× exp−i

∫
d4z

{
g2

2M2
C

[χ̄M (z)γµχM (z)]2
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(a)

Fig. 2a, b. Magnetic mono-
pole diagrams describing the
contributions to the magnetic
monopole condensate caused by
the quantum fluctuations of the
Cµ–field

(b)

+g [χ̄M (z)γνχM (z)]Cν [E(z)]

})
|0 >(M)

conn.

= − M

8π2 g2 Cµ[E(x)]Cµ[E(x)]

+
M

4π2

{
− g2

8π2 [J1(M) + M2J2(M)]

}

× g2

2M2
C

∞∑
n=1

{
1

M2
C

g2

16π2 [J1(M) + M2J2(M)]

}(n−1)

×Cµ[E(x)]Cµ[E(x)]

= − M

24π2

M2
C +

g2

2G1

M2
C −

g2

6G1

g2 Cµ[E(x)]Cµ[E(x)]. (2.12)

Here we have used the definitions of M2
C given by (1.2).

Thus, integrating out explicitly quantum fluctuations
of the dual–vector field Cµ around the Abrikosov flux line
and taking into account the contribution of the scalar
field σ in the tree approximation we obtain the magnetic
monopole condensate in dependence on the shape of a dual
Dirac string in the form:

< χ̄(x)χ(x); E >=< χ̄(0)χ(0) >

{
1 +

M2
C +

g2

2G1

M2
C −

g2

6G1

× κ2

96π2

1
M2 g2 Cµ[E(x)]Cµ[E(x)]

}
. (2.13)

The non–trivial term in the braces of (2.13) is the result of
the calculation of the diagrams in Fig. 2b. It may be seen
that quantum fluctuations of a dual–vector field around
the Abrikosov flux line give a substantial contribution to
the magnetic monopole condensate. In order to retain the
agreement with the results obtained within CQED [15]
which testify the suppression of the magnetic monopole

condensate in the region close to a dual Dirac string we
have to impose the constraint M2

C > g2/6G1.

3 Dual Dirac string shape fluctuations

The string shape fluctuations we define following [14,16]
by Xµ → Xµ+ηµ(X), where ηµ(X) describes fluctuations
around the fixed surface S swept by the shape Γ and obeys
the constraint ηµ(X)|∂S = 0 [14,16] at the boundary ∂S
of the surface S.

The magnetic monopole condensate defined by (2.13)
and averaged over string shape fluctuations reads

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

1
Zshape

×
∫
Dηµ ei δSN[η] g2 Cν{η(x)}Cν{η(x)}, (3.1)

where Zshape is a normalization factor determined as

Zshape =
∫
Dηµei δSN[η] (3.2)

and δSN[η] has been calculated in [14]:

δ SN[η] =
∫∫

d4x d4y ηα(x) Oαβ(x− y) ηβ(y)

+
∫

d4x ηα(x) Oα(x). (3.3)

The operators Oαβ(x− y) and Oα(x) are given by

Oαβ(x− y) =
1
2

δ(4)(x− y) Eµν(x)
∂2

∂xα∂xβ
Σνµ(x)

+
1
4

M2
C Eµν(x)

∂2

∂xα∂xβ
∆ν

λ(x− y;MC) Eλµ(y)
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−
←−−

∂

∂xµ
δ(4)(x− y) Eµν(x) Σαβ(x)

−−→
∂

∂yν

+
←−−

∂

∂xµ
Eµν(x)

∂

∂xβ
Σνα(x) δ(4)(x− y)

−1
2

M2
C

←−−
∂

∂xµ
Eµν(x)

∂

∂xβ
∆α

λ(x− y;MC) Eλν(y)

+δ(4)(x− y)
∂

∂xα
Σβµ(x) Eµν(x)

−−→
∂

∂yν

+
1
2

M2
C

←−−
∂

∂xµ
Eµν(x)

∂

∂xβ
∆ν

λ(x− y;MC) Eλα(y)

−1
4

M2
C

←−−
∂

∂xµ
Eµλ(x) ∆αβ(x− y;MC) Eλν(y)

−−→
∂

∂yν

−1
4

M2
C

←−−
∂

∂xµ
gαβ Eµλ(x) ∆λρ(x− y;MC) Eρν(y)

−−→
∂

∂yν

+
1
4

M2
C

←−−
∂

∂xµ
Eµλ(x) ∆λβ(x− y;MC) Eαν(y)

−−→
∂

∂yν

+
1
4

M2
C

←−−
∂

∂xµ
Eµβ(x) ∆α

λ(x− y;MC) Eλν(y)
−−→
∂

∂yν
,

Oα(x) = Eµν(x)
∂

∂xα
Σνµ(x) +

1
2
Eµν(x)

∂

∂xµ
Σνα(x)

−1
2
Eµν(x)

∂

∂xµ
Σαν(x), (3.4)

where Σνµ(x) is determined by

Σνµ(x) =
1
2

M2
C

∫
d4z ∆µ

λ(x− z;MC) Eλν(z). (3.5)

Using (1.8) and (1.15) we determine g2 Cµ{η(x)}Cµ{η(x)}
as follows:

g2 Cµ{η(x)}Cµ{η(x)}
= g2Q2

∫∫
d∗σλµ(X)d∗σρµ(Y )

∂

∂xλ

×∆(x−X − η(X))
∂

∂xρ
∆(x− Y − η(Y )). (3.6)

The changes of the surface elements σλµ(X) and dσρµ(Y )
caused by the shifts X → X + η(X) and Y → Y + η(Y )
have not been taken into account in the r.h.s. of (3.6),
since they vanish for the straight string. Indeed, the in-
tegration over the η–field we perform following [14,16] for
fluctuations around the shape of the static straight string
with the length L tracing out the rectangular surface S
with the time–side T . In this case the electric field strength
Eµν(x) does not depend on time and reads

−→E (−→x ) = ez Q δ(x) δ(y)

×
[
θ

(
z − 1

2
L

)
− θ

(
z +

1
2

L

)]
, (3.7)

where at Xq = (0, 0, 1
2 L) and Xq̄ = (0, 0,− 1

2 L) quark and
antiquark are placed, respectively. Then the unit vector ez

is directed along the z–axis and θ(z) is the Heaviside–step–
function. The field strength (3.7) induces the dual–vector
potential

< C(x ) > = − i Q

∫
d3k

4 π3

k× ez

kz

× 1
M2

C + k 2 sin

(
kzL

2

)
ei k·x. (3.8)

Allowing only fluctuations in the plane perpendicular to
the string world–sheet, i.e. setting ηt(t, z) = ηz(t, z) = 0
[14,16], we arrive at the fluctuation action δ SN[ηx, ηy]

δ SN[ηx, ηy]

=

T/2∫
−T/2

dt

T/2∫
−T/2

dt′
L/2∫

−L/2

dz

L/2∫
−L/2

dz′

×
[

∂ηx(t, z)
∂t

O1(t, z|t′, z′ )
∂ηx(t′, z′ )

∂t′

−∂ηx(t, z)
∂z

O2(t, z|t′, z′ )
∂ηx(t′, z′ )

∂z′

+ηx(t, z) O3(t, z|t′, z′ ) ηx(t′, z′ ) + (x↔ y)

]
,(3.9)

where the operators Oi (i = 1, 2, 3) are defined by

O1(t, z|t′, z′ ) = Q2
∫

d2k⊥
64π4

×
∞∫

−∞

∞∫
−∞

dk0dkz e−ik0(t− t′) + ikz(z − z′)

×
M2

C + k2
z +

1
2

k 2
⊥

M2
C − k2

0 + k2
z + k 2

⊥
,

O2(t, z|t′, z′ ) = Q2
∫

d2k⊥
64π4

×
∞∫

−∞

∞∫
−∞

dk0dkz e−ik0(t− t′) + ikz(z − z′)

×
M2

C − k2
0 +

1
2

k 2
⊥

M2
C − k2

0 + k2
z + k 2

⊥
,

O3(t, z|t′, z′ ) = δ(t− t′ ) δ(z − z′ ) Q2
∫

d2k⊥k 2
⊥

16π3

×
∞∫

−∞

dkz

kz
sin

(
kzL

2

)
cos(kzz)

× M2
C + k2

z

M2
C + k 2

⊥ + k2
z

−Q2
∫

d2k⊥k 2
⊥

64π4

×
∞∫

−∞

∞∫
−∞

dk0dkz e−ik0(t− t′ )+ikz(z − z′)
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M2
C − k2

0 + k2
z

M2
C − k2

0 + k 2
⊥ + k2

z

. (3.10)

The linear terms in the η–field expansion do not appear,
since only the components Σtz(x) and Σzt(x) survive in
(3.4) for the static string strained along the z–axis.

The fluctuating fields ηi(t, z), where i = x, y, should
obey the boundary conditions ηi(t, z)|∂S = 0, which for
the rectangular surface read [14,16]

ηi(t, z)|∂S = ηi(±T/2, z) = ηi(t,±L/2)
= ηi(±T/2,±L/2) = 0. (3.11)

The integration over the η–fields should be performed with
the weight

1
Zshape

∫∫
DηxDηy eiδ SN[ηx, ηy], (3.12)

where the measure of the integration reads

DηxDηy =
∏

−T/2≤t≤T/2

∏
−L/2≤z≤L/2

×dηx(t, z) dηy(t, z). (3.13)

Before the integration over the η–fields we can make some
simplifications of the ∆–functions. For this aim we suggest
to integrate out k⊥ keeping only the main divergent con-
tributions as it is accepted in our effective approach [1,2].
In the region −L/2 ≤ z ≤ L/2 this reduces the operators
Oi (i = 1, 2, 3) to the expressions

O1(t, z|t′, z′ ) = O2(t, z|t′, z′ )

=
Q2Λ2

⊥
32π

δ(t− t′ ) δ(z − z′ ),

O3(t, z|t′, z′ ) =
Q2Λ2

⊥
16π

(
− ∂2

∂t2
+

∂2

∂z2

)

×δ(t− t′ ) δ(z − z′ ), (3.14)

where Λ⊥ is the cut–off in the plane perpendicular to the
world–sheet of the string. The fluctuation action becomes

δ SN[ηx, ηy] = −3Q2Λ2
⊥

32π

T/2∫
−T/2

dt

L/2∫
−L/2

dz[ηx(t, z)

×(−∆) ηx(t, z) + (x↔ y)], (3.15)

where ∆ is the Laplace operator in 2–dimensional space–
time

∆ = − ∂2

∂t2
+

∂2

∂z2 (3.16)

The common factor Q2Λ2
⊥/8π can be removed by the

renormalization of the η–fields, and the action of the fluc-
tuations becomes

δ SN[ηx, ηy] = −
T/2∫

−T/2

dt

L/2∫
−L/2

dz

×
[
ηx(t, z)

(
− ∆

M2
C

)
ηx(t, z) + (x↔ y)

]
. (3.17)

The factor 1/M2
C is introduced by dimensional considera-

tions. We have used the mass of the dual–vector field, since
the Abrikosov flux line is localized in the region of order
of O(1/MC) in the xy–plane. Of course, the final result
does not depend on the parameter making the operator ∆
dimensionless.

For a static dual Dirac string and after the renormal-
ization of the η–fields the scalar product g2 Cµ

{η(x)}Cµ

{η(x)} amounts to

g2 Cµ{η(x)}Cµ{η(x)} = g2Q2

×
∫∫

d3k

4π3

d3q

4π3

kxqx + kyqy

kzqz

× sin

(
kzL

2

)
sin

(
qzL

2

)
1

M2
C + k 2

× 1
M2

C + q 2 ei (k + q) · x exp i

√
8π

3
1
Q

2
MCΛ⊥

×[(kx + qx)ηx(t, z) + (ky + qy)ηy(t, z)]. (3.18)

Thus, in the static dual Dirac string approximation equa-
tion (3.1) reads

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

× g2Q2
∫∫

d3k

4π3

d3q

4π3

kxqx + kyqy

kzqz
sin

(
kzL

2

)

× sin

(
qzL

2

)
1

M2
C + k 2

1
M2

C + q 2 ei (k + q) · x

× 1
Zshape

∫
DηxDηy exp−i

T/2∫
−T/2

dt′
L/2∫

−L/2

dz′

×
[
ηx(t′, z′ )

(
− ∆

M2
C

)
ηx(t′, z′ )

−
√

8π

3
1
Q

2
MCΛ⊥

(kx + qx)δ(t− t′ )

×δ(z − z′ ) ηx(t′, z′ ) + (x↔ y)

]
. (3.19)

Integrating over the η–fields we get

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

× g2Q2
∫∫

d3k

4π3

d3q

4π3

k⊥ · q⊥
kzqz

sin

(
kzL

2

)
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× sin

(
qzL

2

)
1

M2
C + k 2

1
M2

C + q 2 ei (k + q) · x

× exp

{
− i

8π

3
(k⊥ + q⊥)2

Q2Λ2
⊥

∞∫
−∞

dt′
L/2∫

−L/2

dz′δ(t− t′)

×δ(z − z′ )∆−1δ(t− t′)δ(z − z′ )

}
, (3.20)

where k⊥ · q⊥ = kxqx + kyqy.
In the integrand the Green function ∆−1δ(t− t′) δ(z−

z′ ) should be calculated at certain boundary conditions.
For the open dual Dirac string the calculations should
be performed using Dirichlet boundary conditions [13,14].
Since in this case δ(z − z′ ) is given by

δ(z − z′ ) =
2
L

∞∑
n=−∞

× sin

(
2πn

L
z

)
sin

(
2πn

L
z′
)

, (3.21)

the Green function ∆−1δ(t− t′) δ(z − z′ ) is defined

∆−1δ(t− t′) δ(z − z′ )

=
2
L

∞∑
n=−∞

∞∫
−∞

dω

2π

e−iω(t− t′ )

ω2 − 4π2n2

L2

× sin

(
2πn

L
z

)
sin

(
2πn

L
z′
)

. (3.22)

Using (3.22) we reduce (3.20) to the expression

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

×g2Q2
∫∫

d3k

4π3

d3q

4π3

k⊥ · q⊥
kzqz

× sin

(
kzL

2

)
sin

(
qzL

2

)
1

M2
C + k 2

1
M2

C + q 2

×ei (k + q) · x exp

{
− i

8π

3
(k⊥ + q⊥)2

Q2Λ2
⊥

(3.23)

× 2
L

∞∑
n=−∞

∞∫
−∞

dω

2π

1

ω2 − 4π2n2

L2

sin2

(
2πn

L
z

)}
.

By applying the Wick rotation ω → iω we obtain the
magnetic monopole condensate in the form

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

×
∫∫

d3k

2π2

d3q

2π2

k⊥ · q⊥
kzqz

sin

(
kzL

2

)

× sin

(
qzL

2

)
1

M2
C + k 2

1
M2

C + q 2 ei (k + q) · x

× exp

{
− 1

2
(k⊥ + q⊥)2

Λ2
⊥

ϕ(z)

}
, (3.24)

where we have used the Dirac quantization condition g Q
= 2π and denoted

ϕ(z) =
4
3

g2

π

2
L

∞∑
n=−∞

∞∫
−∞

dω

2π

× 1

ω2 +
4π2n2

L2

sin2

(
2πn

L
z

)
. (3.25)

The function ϕ(z) is defined by a divergent series. There-
fore, it should be regularized. The regularization of this
function we perform in the Appendix. As it is shown the
regularized ϕ(z)–function equals to zero for any z ranging
the values from the interval −L/2 ≤ zL/2. Thus, below
we set ϕ(z) = 0 and get

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

×
∫∫

d3k

2π2

d3q

2π2

k⊥ · q⊥
kzqz

sin

(
kzL

2

)
sin

(
qzL

2

)

× 1
M2

C + k2

1
M2

C + q2 ei(k + q) · x. (3.26)

For a sufficiently long string the main contributions to the
integrals over kz and qz come from the momenta |kz| ∼
2/L and |qz| ∼ 2/L. These values are small compared
with M2

C and can be neglected in the denominators. This
reduces the r.h.s. of (3.24) to the form

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

×
[ ∞∫

−∞

dkz

kz
sin

(
kzL

2

)
cos(kzz)

]2

×
∫∫

d2k⊥
2π2

d2q⊥
2π2

(k⊥ · q⊥)
(M2

C + k 2
⊥)(M2

C + q 2
⊥)
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×ei (k⊥ + q⊥) · x⊥ . (3.27)

where x⊥ = (x, y). Taking into account that z is in the
interval −L/2 ≤ z ≤ L/2 we simplify (3.26) as follows

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

=< χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

∫∫
d2k⊥
2π

×d2q⊥
2π

(k⊥ · q⊥)ei(k⊥ + q⊥) · x⊥

[M2
C + k2

⊥][M2
C + q2

⊥]
. (3.28)

We can represent the r.h.s. of (3.27) in the more convenient
form

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

= − < χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

×
[
5x⊥

∫
d2k⊥
2π

eix⊥ · k⊥

M2
C + k 2

⊥

]2

, (3.29)

where 5x⊥ is the gradient with respect to x⊥.
Integrating over directions of the vector k⊥ and taking

the gradient we get

< χ̄(x)χ(x); E > − < χ̄(0)χ(0) >

= − < χ̄(0)χ(0) >
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

96π2

1
M2

×
[∫ ∞

0

dkk2J1(kr)
M2

C + k2

]2

, (3.30)

where J1(uk) is a Bessel function and r = |x⊥|. The inte-
gral over k can be calculated explicitly and reads∫ ∞

0

dkk2J1(kr)
M2

C + k2 =
2M2

C

r

∫ ∞

0

dkkJ0(kr)
(M2

C + k2)2

= MCK1(MCr), (3.31)

where K1(MCr) is a McDonald function.
Thus, the magnetic condensate averaged over quantum

dual–vector field and string shape fluctuations reads

< χ̄(x)χ(x); E >=< χ̄(0)χ(0) >

×
[
1−

M2
C +

g2

2G1

M2
C −

g2

6G1

κ2

96π2

M2
C

M2 K2
1 (MCr)

]
. (3.32)

It may be seen that due to the constraint M2
C > g2/6G1

the magnetic monopole condensate at distances close to

the string r → 0 becomes suppressed. For r → 0 the
McDonald function K1(MCr) behaves like K1(MCr) →
1/MCr. However, we have to emphasize that in such a
model like the MNJL model [1,2] and a dual Higgs model
[11] the region of distances close to the string is restricted
by the constraint r ≥ 1/Λ⊥, where Λ⊥ is the cut–off in
plane perpendicular to the world–sheet of a dual Dirac
string [2,5,11,13,14]. Due to Nambu [5] 1/Λ⊥ should be
understood as a thickness of a string. Following [5,11] this
cut–off Λ⊥ should be identified with the mass of the σ–
meson, , i.e. Λ⊥ = Mσ = 2M . As has been shown in
[11] this choice makes next–to–leading order corrections
in large Mσ expansion to the string tension logarithmi-
cally small compared with the leading order contribution.
Thus, the McDonald function K1(MCr) is restricted from
above as K1(MCr) ≤ 2M/MC . Since the value of the con-
densate can be either negative or zero, we can impose the
constraint

1−
M2

C +
g2

2G1

M2
C −

g2

6G1

κ2

24π2 ≥ 0, (3.33)

where we have neglected the contribution of the term of
order O(1/M3). Using the relation κ2 = 2 g2/3 we bring
up (3.33) to the form

M2
C ≥

g2

6G1

1 +
g2

12π2

1− g2

36π2

. (3.34)

This relation agrees with the inequality M2
C > g2/6G1 for

any g2/36π2 < 1.
The inequalities M2

C ≥ g2/6G1 and g2/36π2 < 1 can
be rewritten as the inequality for the cut–off Λ and the
monopole mass M . Using the relation G1 = G/4, the ex-
pression for the mass of the dual–vector Cµ–field (1.2), the
gap–equation (1.4) and the constraints (1.6) we obtain

39
16

(
Λ

M

)4

> 1 +

(
Λ

M

)2

. (3.35)

The solution of this inequality gives only a trivial con-
straint Λ > M . This means that in the MNJL model with
dual Dirac strings the suppression of the monopole con-
densate in the close vicinity of a dual Dirac string is always
fulfilled.

At distances far from the string r → ∞ the contribu-
tion of the string is exponentially suppressed as e−2 MCr

due to the Meissner effect, and the magnetic monopole
condensate tends to the magnitude of the order parameter,
i.e. < χ̄(0)χ(0) >. A similar influence of an electric flux
tube, being an analogy to a dual Dirac string in CQED,
on the magnitude of the magnetic monopole condensate
has been observed within CQED [15].
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4 Conclusion

We have investigated the magnetic monopole condensate
as a functional of the shape of a dual Dirac string in the
MNJL model assuming that the non–perturbative vac-
uum of the MNJL model is Dual superconductor of type
II. The former has been realized through the constraint
Mσ � MC [12]. Unlike a dual Higgs model with dual
Dirac strings [11,12] the mass of a dual–vector field MC

is not proportional to the order parameter < χ̄χ > and
does not vanish in the limit < χ̄χ >→ 0. This is readily
seen from the mass formula

M2
σ (8 M2

C + 3 M2
σ) = −56g2 < χ̄χ >,

which can be derived from (1.2). Thus, in the MNJL model
a dual–vector field does not need a Goldston boson as
a longitudinal component. This distinguishes the transi-
tion to the non–perturbative superconducting phase in the
NMJL and the dual Higgs model. Indeed, in the MNJL
model this transition does not accompany the appearance
of Goldston bosons. The former is rather natural, since
the starting U(1) magnetic symmetry in the MNJL model
is global and unbroken in the non–perturbative supercon-
ducting phase. Recall that in the dual Higgs model the
magnetic U(1) symmetry is local and becomes sponta-
neously broken in the superconducting phase.

We have shown that the integration over quantum fluc-
tuations of the dual–vector field Cµ around the shape of
the Abrikosov flux line leads to a substantial contribution.
In accordance with the prediction of CQED this contribu-
tion leads to the suppression of the magnetic monopole
condensate at distances close to a dual Dirac string at the
natural assumption that Λ > M (see (3.35)).

At distances far from the string, where the influence of
the string is exponentially suppressed due to the Meissner
effect,the contribution of quantum dual–vector field fluc-
tuations to the magnetic monopole condensate decreases.
At infinitely large distances the magnitude of the mag-
netic monopole condensate tends to the magnitude of the
order parameter, i.e., < χ̄(0)χ(0) >.

The integration over string shape fluctuations can be
performed analytically only for the fluctuations around
the shape of the static straight string of length L. The
contribution of the string shape fluctuations smoothes the
suppression of the magnetic monopole condensate at dis-
tances close to the string and retains the exponential de-
crease at distances far from the string. The obtained re-
sults testify the equivalence of the MNJL model with dual
Dirac strings to CQED.

Appendix
Regularization of the ϕ(z)–function

The function ϕ(z) represented (3.25) is defined by a diver-
gent expression. Therefore, it is requested to regularize it.
For the regularization of ϕ(z) we introduce an arbitrary

infra–red parameter µ as follows

ϕ(z)→ ϕ(z)R =
4
3

g2

π

2
L

∞∑
n=−∞

∞∫
−∞

dω

2π

× 1

ω2 +
4π2n2

L2 + µ2
sin2

(
2πn

L
z

)
. (A.1)

The next step of the regularization is to apply the follow-
ing integral representation:

ϕ(z)R = lim
µ→0

4
3

g2

π

2
L

×
∞∑

n=0

∞∫
−∞

dt

2π
e−i2πnt/L

∞∫
−∞

∞∫
−∞

dωdpz

2π

× eipzt

ω2 + p2
z + µ2 [1− cos(2pzz)]. (A.2)

It is easy to show that integrating over t and pz we return
to (A.1).

Then, it is convenient to decompose the integrals into
two parts

ϕ(z)R = ϕ(1)(z)R − ϕ(2)(z)R (A.3)

where we have denoted

ϕ(1)(z)R =
4
3

g2

π

2
L

∞∑
n=0

∞∫
−∞

dt

2π
e−i2πnt/L

×
∞∫

−∞

∞∫
−∞

dωdpz

2π

eipzt

ω2 + p2
z + µ2 , (A.4)

ϕ(2)(z)R =
4
3

g2

π

2
L

∞∑
n=0

∞∫
−∞

dt

2π
e−i2πnt/L

×
∞∫

−∞

∞∫
−∞

dωdpz

2π

eipzt

ω2 + p2
z + µ2 cos(2pzz)

=
2
3

g2

π

2
L

∞∑
n=0

∞∫
−∞

dt

2π
e−i2πnt/L

∞∫
−∞

∞∫
−∞

dωdpz

2π

×eipz(t + 2z) + eipz(t− 2z)

ω2 + p2
z + µ2 . (A.5)

Now let us perform a summation over index n which gives

ϕ(1)(z)R =
4
3

g2

π

2
L

∞∫
−∞

dt

4πi

eiπt/L

sin(πt/L)

×
∞∫

−∞

∞∫
−∞

dωdpz

2π

eipzt

ω2 + p2
z + µ2 , (A.6)
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ϕ(2)(z)R =
2
3

g2

π

2
L

∞∫
−∞

dt

4πi

eiπt/L

sin(πt/L)

∞∫
−∞

∞∫
−∞

dωdpz

2π

×eipz(t + 2z) + eipz(t− 2z)

ω2 + p2
z + µ2 . (A.7)

It is convenient to proceed to polar coordinates in the
plane (ω, pz) and perform the integration over the az-
imuthal angle:

ϕ(1)(z)R =
4
3

g2

π

2
L

∞∫
−∞

dt

4πi

× eiπt/L

sin(πt/L)

∞∫
0

dp p J0(pt)
p2 + µ2 , (A.8)

ϕ(2)(z)R =
2
3

g2

π

2
L

∞∫
−∞

dt

4πi

eiπt/L

sin(πt/L)

∞∫
0

dp p

p2 + µ2

×[J0(p(t + 2z)) + J0(p(t− 2z))], (A.9)

where J0(x) is a Bessel function. Since the Bessel functions
in the integrand of (A.8) and (A.9) are even under the
transformation t→ −t, the integrals become

ϕ(1)(z)R =
4
3

g2

π

2
L

∞∫
−∞

dt

4π

∞∫
0

dp p J0(pt)
p2 + µ2 , (A.10)

ϕ(2)(z)R =
2
3

g2

π

2
L

∞∫
−∞

dt

4π

∞∫
0

dp p

p2 + µ2

×[J0(p(t + 2z)) + J0(p(t− 2z))]. (A.11)

The dependence of z can be removed by the shifts t+2z →
t and t− 2z → t:

ϕ(1)(z)R = ϕ(2)(z)R =
4
3

g2

π

2
L

×
∞∫

−∞

dt

4π

∞∫
0

dp p J0(pt)
p2 + µ2 , (A.12)

As the integral over t equals to

∞∫
−∞

dt p J0(pt) = 2, (A.13)

the functions ϕ(1)(z)R and ϕ(2)(z)R are defined by the
integral over p:

ϕ(1)(z)R = ϕ(2)(z)R =
2
3

g2

π2

2
L

×
∞∫
0

dp

p2 + µ2 =
g2

3π

2
Lµ

. (A.14)

Substituting (A.13) in (A.3) we get

ϕ(z)R = 0. (A.15)

Thus, the regularized version of the ϕ(z)–function van-
ishes for all z ∈ [−L/2, L/2].
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